Abstract

The effects of six biotic and abiotic elicitors, i.e. MeJA (methyl jasmonate), SA (salicylic acid), ZnCl2, glutathione and β-glucan BG (fungal elicitor), and wounding, on the secondary metabolite accumulation in the soft coral Sarcophyton ehrenbergi were assessed. Upon elicitation, metabolites were extracted and analysed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Except for MeJA, no differences in photosynthetic efficiency were observed after treatments, suggesting the absence of a remarkable stress on primary production. Chemometric analyses of UPLC-MS data showed clear segregation of SA and ZnCl2 elicited samples at 24 and 48 h post elicitation. Levels of acetylated diterpene and sterol viz., sarcophytonolide I and cholesteryl acetate, was increased in ZnCl2 and SA groups, respectively, suggesting an activation of specific acetyl transferases. Post elicitation, sarcophytonolide I level increased 132 and 17-folds at 48 h in 0.1 mM SA and 1 mM ZnCl2 groups, respectively. Interestingly, decrease in sarcophine, a major diterpene was observed only in response to ZnCl2, whereas no change was observed in sesquiterpene content following treatments. To the best of our knowledge, this study provides the first documentation for elicitation effects on a soft corals secondary metabolome and suggests that SA could be applied to increase diterpenoid levels in corals.

Highlights

  • Marine invertebrates are well recognized for their novel secondary metabolites composition endowed with a wide range of structural diversity and various biological activities

  • Methyl jasmonate (MeJA) and salicylic acid (SA) are two key signalling molecules known to elicit defence related responses in planta during herbivore predation mostly via the production of defence secondary metabolites31. β-Glucan is an oligosaccharide derived from cell walls of fungi, while glutathione is a tripeptide required for efficient defence against pathogens and redox/electrophile disbalances[23]

  • No difference in photochemical quantum efficiency was observed in all elicited coral samples, except for samples treated with MeJA which showed slight decrease in comparable pulse amplitude modulated measurements (PAM)

Read more

Summary

Introduction

Marine invertebrates are well recognized for their novel secondary metabolites composition endowed with a wide range of structural diversity and various biological activities. Diterpenes, mainly cembranoids are the most abundant metabolites identified in genus Sarcophyton and they are considered the main chemical defence of corals against natural predators[8,9,10]. Ex-situ or in vitro cultures parameters could be optimized to enhance product levels including culture temperature, light intensity, nutrients composition and possibly enabling the manipulation with different biotic and abiotic factors that could maximize coral secondary metabolite production[22]. One of the most relevant stressors inducing elicitation is wounding, whereby e.g. plants can distinguish scratches from the bites of enemies[27] Both biotic and abiotic elicitors have the potential to enhance the production of terrestrial plant defence related metabolites from almost all chemical classes, such as sesquiterpene lactones[28], anthocyanins[29] and flavonoids[30]. Methyl jasmonate (MeJA) and salicylic acid (SA) are two key signalling molecules known to elicit defence related responses in planta during herbivore predation mostly via the production of defence secondary metabolites31. β-Glucan is an oligosaccharide derived from cell walls of fungi, while glutathione is a tripeptide required for efficient defence against pathogens and redox/electrophile disbalances[23]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.