Abstract
NH3–N and NO2–N always co-exist in the aquatic environment, but there is not a clear opinion on their joint toxicities to the molluscs. Presently, clams Ruditapes philippinarum were challenged by environmental concentrations of NH3–N and NO2–N, singly or in combination, and analyzed by metabolomics approaches, enzyme assays and transmission electron microscope (TEM) observation. Results showed that some same KEGG pathways with different enriched-metabolites were detected in the three exposed groups within one day, and completely different profiles of metabolites were found in the rest of the exposure period. The combined exposure induced heavier and more lasting toxicities to the clams compared with their single exposure. ACP activity and the number of secondary lysosomes were significantly increased after the combined exposure. The present study shed light on the joint-toxicity mechanism of NH3–N and NO2–N, and provided fundamental data for the toxicity research on inorganic nitrogen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.