Abstract

Mulberry is an economically significant crop for the sericulture industry worldwide. Stresses such as drought exposure have a significant influence on plant survival. Because metabolome directly reflects plant physiological condition, performing a global metabolomic analysis is one technique to examine this influence. Using a liquid chromatography-mass spectrometry (LC-MS) technique based on an untargeted metabolomic approach, the effect of drought stress on mulberry Yu-711 metabolic balance was examined. For this objective, Yu-711 leaves were subjected to two weeks of drought stress treatment and control without drought stress. Numerous differentially accumulated metabolic components in response to drought stress treatment were revealed by multivariate and univariate statistical analysis. Drought stress treatment (EG) revealed a more differentiated metabolite response than the control (CK). We found that the levels of total lipids, galactolipids, and phospholipids (PC, PA, PE) were significantly altered, producing 48% of the total differentially expressed metabolites. Fatty acyls components were the most abundant lipids expressed and decreased considerably by 73.6%. On the other hand, the prenol lipids class of lipids increased in drought leaves. Other classes of metabolites, including polyphenols (flavonoids and cinnamic acid), organic acid (amino acids), carbohydrates, benzenoids, and organoheterocyclic, had a dynamic trend in response to the drought stress. However, their levels under drought stress decreased significantly compared to the control. These findings give an overview for the understanding of global plant metabolic changes in defense mechanisms by revealing the mulberry plant metabolic profile through differentially accumulated compounds.

Highlights

  • Crop losses have increased in recent decades due to changing weather patterns linked to climate change, and climate models forecast that droughts, floods, and severe temperatures will become more prevalent [1]

  • The physiological evaluation reveals that mulberry leaf length remained shorter under the drought stress as the days for the drought period increased compared to the control treatment (Figure 1b)

  • The results show that lipids, organic acids, phenylpropanoid, organic oxygen compounds, organoheterocyclic, and other metabolites (Supplementary Table S2), and their pathway metabolism may play a role in drought stress response

Read more

Summary

Introduction

Crop losses have increased in recent decades due to changing weather patterns linked to climate change, and climate models forecast that droughts, floods, and severe temperatures will become more prevalent [1]. Drought remains one of the most damaging environmental stresses, as it inhibits plant growth and decreases productivity [2]. Drought stress has severe morphological, physiological, and biochemical consequences for plants, including reduced photosynthesis, disrupted cell elongation and division, and loss of cell turgor [3]. It affects crop gene expression, distribution, yield, and quality by preventing plants from absorbing additional nutrients [4,5]. A deeper understanding of tree crop responses to water deficit is critical to screen drought-tolerant varieties or genotypes that can respond to future climate scenarios in order to combat this effect

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call