Abstract

Chronic obstructive pulmonary disease (COPD) and lung cancer are widespread lung diseases. Cigarette smoking is a high risk factor for both the diseases. COPD may increase the risk of developing lung cancer. Thus, it is crucial to be able to distinguish between these two pathological states, especially considering the early stages of lung cancer. Novel diagnostic and monitoring tools are required to properly determine lung cancer progression because this information directly impacts the type of the treatment prescribed. In this study, serum samples collected from 22 COPD and 77 lung cancer (TNM stages I, II, III, and IV) patients were analyzed. Then, a collection of NMR metabolic fingerprints was modeled using discriminant orthogonal partial least squares regression (OPLS-DA) and further interpreted by univariate statistics. The constructed discriminant models helped to successfully distinguish between the metabolic fingerprints of COPD and lung cancer patients (AUC training=0.972, AUC test=0.993), COPD and early lung cancer patients (AUC training=1.000, AUC test=1.000), and COPD and advanced lung cancer patients (AUC training=0.983, AUC test=1.000). Decreased acetate, citrate, and methanol levels together with the increased N-acetylated glycoproteins, leucine, lysine, mannose, choline, and lipid (CH3(CH2)n) levels were observed in all lung cancer patients compared with the COPD group. The evaluation of lung cancer progression was also successful using OPLS-DA (AUC training=0.811, AUC test=0.904). Based on the results, the following metabolite biomarkers may prove useful in distinguishing lung cancer states: isoleucine, acetoacetate, and creatine as well as the two NMR signals of N-acetylated glycoproteins and glycerol.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.