Abstract

Osteoarthritis (OA) is a common degenerative disorder of the synovial joints and is usually an age-related disease that occurs due to continuous wear and tear of the cartilage in the joints. Presently, there is no proven medical management to halt the progression of the disease in the early stages. The purpose of our systematic review is to analyze the possible metabolites and metabolic pathways that are specifically involved in OA pathogenesis and early treatment of the disease. The articles were collected from PubMed, Cochrane, Google Scholar, Embase, and Scopus databases. "Knee", "Osteoarthritis", "Proteomics", "Lipidomics", "Metabolomics", "Metabolic Methods", and metabolic* were employed for finding the articles. Only original articles with human or animal OA models with healthy controls were included. From the initial screening, a total of 458 articles were identified from the 5 research databases. From these, 297 articles were selected in the end for screening, of which 53 papers were selected for full-text screening. Finally, 50 articles were taken for the review based on body fluid: 6 urine studies, 15 plasma studies, 16 synovial fluid studies, 11 serum studies, 4 joint tissue studies, and 1 fecal study. Many metabolites were found to be elevated in OA. Some of these metabolites can be used to stage the OA Three pathways that were found to be commonly involved are the TCA cycle, the glycolytic pathway, and the lipid metabolism. All these studies showed a vast array of metabolites and metabolic pathways associated with OA. Metabolites like lysophospholipids, phospholipids, arginine, BCCA, and histidine were identified as potential biomarkers of OA but a definite association was not identified, Three pathways (glycolytic pathway, TCA cycle, and lipid metabolic pathways) have been found as highly significant in OA pathogenesis. These metabolic pathways could provide novel therapeutic targets for the prevention and progression of the disease. The online version contains supplementary material available at 10.1007/s43465-024-01169-5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.