Abstract

IntroductionActinomycetes produce the majority of the antibiotics currently in clinical use. The efficiency of antibiotic production is affected by multiple factors such as nutrients, pH, temperature and growth phase. Finding the optimal harvesting time is crucial for successful isolation of the desired bioactive metabolites from actinomycetes, but for this conventional chemical analysis has limitations due to the metabolic complexity.ObjectivesThis study explores the utility of NMR-based metabolomics for (1) optimizing fermentation time for the production of known and/or unknown bioactive compounds produced by actinomycetes; (2) elucidating the biosynthetic pathway for microbial natural products; and (3) facilitating the biotransformation of nature-abundant chemicals.MethodThe aqueous culture broth of actinomycete Streptomyces sp. MBT76 was harvested every 24 h for 5 days and each broth was extracted by ethyl acetate. The extracts were analyzed by 1H NMR spectroscopy and the data were compared with principal component analysis (PCA) and orthogonal projection to latent structures (OPLS) analysis. Antimicrobial test were performed by agar diffusion assay.ResultsThe secondary metabolites production by Streptomyces sp. MBT76 was growth phase-dependent. Isocoumarins (1–9), undecylprodiginine (10), streptorubin B (11), 1H-pyrrole-2-carboxamide (12), acetyltryptamine (13), and fervenulin (14) were identified, and their optimal production time was determined in crude extracts without tedious chromatographic fractionation. Of these compounds, 5,6,7,8-tetramethoxyl-3-methyl-isocoumarin (9) is as a novel compound, which was most likely synthesized by a type I iterative polyketide synthase (PKS) encoded by the icm gene cluster. Multivariate data analysis of the 1H NMR spectra showed that acetyltryptamine (13) and tri-methoxylated isocoumarins (7 and 8) were the major determinants of antibiotic activity during later time points. The methoxylation was exploited to allow bioconversion of exogenously added genistein into a suite of methoxylated isoflavones (15–18). Methoxylation increased the antimicrobial efficacy of isocoumarins, but decreased that of the isoflavones.ConclusionOur results show the applicability of NMR-based metabolic profiling to streamline microbial biotransformation and to determine the optimal harvesting time of actinomycetes for antibiotic production.Electronic supplementary materialThe online version of this article (doi:10.1007/s11306-016-1025-6) contains supplementary material, which is available to authorized users.

Highlights

  • Actinomycetes produce the majority of the antibiotics currently in clinical use

  • This study explores the utility of NMR-based metabolomics for (1) optimizing fermentation time for the production of known and/or unknown bioactive compounds produced by actinomycetes; (2) elucidating the biosynthetic pathway for microbial natural products; and (3) facilitating the biotransformation of nature-abundant chemicals

  • 5,6,7,8-tetramethoxyl-3-methyl-isocoumarin (9) is as a novel compound, which was most likely synthesized by a type I iterative polyketide synthase (PKS) encoded by the icm gene cluster

Read more

Summary

Introduction

Actinomycetes produce the majority of the antibiotics currently in clinical use. The efficiency of antibiotic production is affected by multiple factors such as nutrients, pH, temperature and growth phase. The alarming increase of pathogen resistance underlines the urgent need for new antibiotics (WHO 2014). As producers of two-thirds of all known antibiotics and of many other bioactive compounds, actinomycetes are a rich source of clinical drugs, with the majority produced by members of the genus Streptomyces (Barka et al 2016; Berdy 2005). A new drugdiscovery pipeline is rapidly gaining momentum, which is combining fluctuation of the (cryptic) antibiotics production with metabolic profiling-based identification of the bioactivity of interest (Scherlach and Hertweck 2009; Wu et al 2015b; Zhu et al 2014a)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.