Abstract

During the subculture of filamentous fungi, obvious signs of degradation occur which affect the growth and development of the strain, change the content of metabolites, and interfere with gene expression. However, the specific molecular mechanism of filamentous fungi degradation is still unclear. In this study, a filamentous fungus Samsoniella hepiali was used as the research object, and it was continuously subcultured. The results showed that when the strain was subcultured to the F8 generation, the strain began to show signs of degradation, which was manifested by affecting the apparent morphology, reducing the growth rate and sporulation, and destroying the antioxidant system. Further transcriptome and metabolomics analyses were performed, and the results showed differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) that were mainly enriched in four metabolic pathways: ABC transporters; fatty acid degradation; alanine, aspartate, and glutamate metabolism; and purine metabolism. Many of the metabolites that were significantly enriched in different pathways may mainly be regulated by genes belonging to proteins and enzymes, such as Abcd3, Ass1, and Pgm1. At the same time, in the process of subculture, many genes and metabolites that can induce apoptosis and senescence continue to accumulate, causing cell damage and consuming a lot of energy, which ultimately leads to the inhibition of mycelial growth. In summary, this study clarified the response of S. hepiali strains to key metabolic pathways during subculture and some reasons for the degradation of strains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.