Abstract

The aim of this study is to explore a bridge connecting the mechanism basis and macro syndromes of coronary heart disease with experimental animal models. GC-MS technique was used to detect the metabolites of plasma samples in mini swine models with myocardial infarction (MI) and patients with unstable angina (UA). 30 metabolites were detected in the plasma samples of more than 50 percent of model group and control group in swine, while 37 metabolites were found in the plasma samples of UA patients and healthy control group. 21 metabolites in the plasma samples of swine model and 20 metabolites in patients with UA were found of significant value. Among which, 8 shared metabolites were found of low level expression in both swine model and UA patients. Independent Student's t-test, principal component analysis (PCA), and hierarchicalcluster analysis (HCA) were orderly applied to comprehend inner rules of variables in the data. The 8 shared metabolites could take place of the 21 or 20 metabolites in classification of swine model with MI and UA patients, which could be considered as a bridge connecting the mechanism basis and macrosyndromes of swine model with MI and UA patients.

Highlights

  • Coronary heart disease (CHD) causes more than one million Chinese to death each year [1]

  • Student’s t-test was initially employed to detect metabolites that are of significant difference between model and sham operation in swine as well as between Unstable angina (UA) patients and healthy people. 21 metabolites in the plasma samples of swine model, and 20 metabolites in patients with UA were found of significantly value

  • Low level expressions of the eight molecules, 1,4-benzenedicarboxylic acid, 1,5-anhydroglucitol, 2-keto-d-gluconic acid, azelaic acid, heptanedioic acid, pentanedioic acid, ribitol, and serine were detected in swine models as well as in UA patients, which could be considered as a bridge connecting the mechanism basis and macrosyndromes of swine model with myocardial infarction (MI) and UA patients

Read more

Summary

Introduction

Coronary heart disease (CHD) causes more than one million Chinese to death each year [1]. Unstable angina (UA) is one of the most dangerous types of CHD that has a high mortality and morbidity in the world. Comparing the metabolites in swine model and patients with UA of blood stasis syndrome at the level of metabolomics to explore the underlying mechanism is a new way deserved trying. Metabonomics, the study of metabolites and their roles in various disease states, is a novel methodology arising from the postgenomics era. Metabonomics is recognized as an independently and widely used technique for deriving new biochemical-based assays for disease diagnosis, understanding the relationships between gene function and metabolic control in health and disease, and identifying combination biomarkers for disease [3]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call