Abstract

Tea market is currently oversupplied, and unsold tea often needs to be properly stored for a period of time. However, the chemical changes occurring in black tea during storage are limitedly understood. In this study, a comprehensive nontargeted and targeted metabolomics approach was used to investigate the dynamic changes in compounds in time-series (0-19 months)-stored black teas. The contents of flavanols, theaflavins (TFs), theasinensins, procyanidins, most phenolic acids, amino acids, quercetin-O-glycosides, and myricetin-O-glycosides decreased during storage, while the contents of N-ethyl-2-pyrrolidinone-substituted flavanols, flavone-C-glycosides, and most kaempferol-O-glycosides increased. More importantly, four novel compounds strongly positively correlated with storage duration (r = 0.922-0.969) were structurally assigned as N-ethyl-2-pyrrolidinone-substituted TFs and validated with synthetic reactions of TFs and theanine standards. The content of N-ethyl-2-pyrrolidinone-substituted TFs was 51.54 μg/g in black tea stored for 19 months. To the best of our knowledge, N-ethyl-2-pyrrolidinone-substituted TFs were discovered in tea for the first time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call