Abstract

BackgroundThe Artemisia species are widely distributed around the world, and have found important usage in traditional medicinal practice. This study was designed to investigate the metabolites of Tibetan Artemisia species and understand the metabolic pathways.MethodsThe metabolites from three Artemisia species in Tibet, were analyzed using LC–MS/MS. The differential metabolites were classified and analyzed by principal component analysis (PCA), partial least squares analysis and hierarchical clustering. KEGG Pathway enrichment analysis was used to identify the key metabolic pathways involved in the differential metabolites of three Artemisia species.ResultThe metabolites of three Artemisia species were analyzed. Under the positive ion mode in LC–MS/MS, 262 distinct metabolites were differentially detected from Artemisia sieversiana and Artemisia annua, 312 differential metabolites were detected from Artemisia wellbyi and Artemisia sieversiana, 306 differential metabolites were screened from Artemisia wellbyi and Artemisia annua. With the negative ion mode, 106 differential metabolites were identified from Artemisia sieversiana and Artemisia annua, 131 differential metabolites were identified from Artemisia wellbyi and Artemisia sieversiana,133 differential metabolites were differentially detected from Artemisia wellbyi and Artemisia annua. The selected differential metabolites were mainly organic acids and their derivatives, ketones, phenols, alcohols and coumarins. Among these natural compounds, artemisinin, has the highest relative content in Artemisia annua.ConclusionsThis is the first reported attempt to comparatively determine the types of the metabolites of the three widely distributed Artemisia species in Tibet. The information should help medicinal research and facilitate comprehensive development and utilization of Artemisia species in Tibet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.