Abstract
The egg yolk of the goose is rich in lipids, proteins and minerals, which is the main source of nutrition during the goose embryogenesis. Actually, the magnitude and variety of nutrients in yolk are dynamically changed to satisfy the nutritional requirements of different growth and development periods. The yolk sac membrane (YSM) plays a role in metabolizing and absorbing nutrients from the yolk, which are then consumed by the embryo or extra-fetal tissues. Therefore, identification of metabolites in egg yolk can help to reveal nutrient requirement in goose embryo. In this research, to explore the metabolite changes in egg yolk at embryonic day (E) 7, E12, E18, E23, and E28, we performed the assay using ultra-high performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS). The findings showed that E7 and E12, E23 and E28 were grouped together, while E18 was significantly separated from other groups, indicating the changes of egg yolk development and metabolism. In total, 1472 metabolites were identified in the egg yolk of Zhijin white goose, and 636 differential metabolites (DMs) were screened, among which 264 were upregulated and 372 were downregulated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the DMs were enriched in the biosynthesis and metabolism of amino acids, digestion and absorption of protein, citrate cycle (TCA cycle), aminoacyl-tRNA biosynthesis, phosphotransferase system (PTS), mineral absorption, cholesterol metabolism and pyrimidine metabolism. Our study may provide new ideas for improving prehatch embryonic health and nutrition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.