Abstract

The purpose of this study was to investigate alterations in serum metabolites during endometrial transformation and possibleassociations with recurrent implantation failure (RIF) in hormonal replacement therapy (HRT)-frozen embryo transfer (FET) cycles. We performed a prospective study involving 100 patients scheduled for HRT-FET cycles during January 2022 to April 2022. Blood serum samples were collected on the day of progesterone administration (dPA) and on the third day of progesterone administration (d3PA). Gas chromatography-mass spectrometry (GC-MS) analysis was performed to identify and quantify serum metabolites. A nested case-control study including 19 RIF patients and 19 matching controls was conducted to explore the predictive value of serum metabolites for RIF. Partial least squares discriminant analysis (PLS-DA) and receiver operating characteristic (ROC) curve analysis were performed to establish prediction models. We identified 105 serum metabolites, with 76 of them exhibiting significant alterations during the initial 3 days of endometrial transformation. Metabolites involved in amino acid metabolism and tricarboxylic acid (TCA) cycle showed lower levels during endometrial transformation. In the nested case-control study, the prediction model based on the ratio of serum metabolites between d3PA and dPA showed the highest area under the ROC curve (AUC), accuracy, and R2 and Q2 values. Eight metabolites, including indol-3-propionic acid, beta-alanine, myristoleic acid, malic acid, indole, DL-isocitric acid, proline, and itaconic acid, exhibited high predictive values for RIF. This study demonstrates alterations in serum metabolites during endometrial transformation, particularly in amino acid metabolism and TCA cycle. The identified metabolites, especially indol-3-propionic acid and malic acid, show potential as predictive markers for RIF. These findings contribute to a better understanding of the metabolic changes associated with endometrial receptivity and provide insights for the development of personalized approaches to improve implantation outcomes in FET cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call