Abstract

Sulfur mustard (SM) is a highly potent alkylating vesicant agent and remains a relevant threat to both civilians and military personnel. The eyes are the most sensitive organ after airborne SM exposure, causing ocular injuries with no antidote or specific therapeutics available. In order to identify relevant biomarkers and to obtain a deeper understanding of the underlying biochemical events, we performed an untargeted metabolomics analysis using liquid chromatography coupled to high-resolution mass spectrometry of plasma samples from New Zealand white rabbits ocularly exposed to vapors of SM. Metabolic profiles (332 unique metabolites) from SM-exposed (n = 16) and unexposed rabbits (n = 8) were compared at different time intervals from 1 to 28 days. The observed time-dependent changes in metabolic profiles highlighted the profound dysregulation of the sulfur amino acids, the phenylalanine, the tyrosine and tryptophan pathway, and the polyamine and purine biosynthesis, which could reflect antioxidant and anti-inflammatory activities. Taurine and 3,4-dihydroxy-phenylalanine (Dopa) seem to be specifically related to SM exposure and correspond well with the different phases of ocular damage, while the dysregulation of adenosine, polyamines, and acylcarnitines might be related to ocular neovascularization. Additionally, neither cysteine, N-acetylcysteine, or guanine SM adducts were detected in the plasma of exposed rabbits at any time point. Overall, our study provides an unprecedented view of the plasma metabolic changes post-SM ocular exposure, which may open up the development of potential new treatment strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.