Abstract
PurposeTo explore the metabolic profiles in the aqueous humor (AH) of patients with congenital ectopia lentis (CEL).MethodsWe conducted a comprehensive analysis of the metabolites of AH samples of patients with CEL (n = 22) and age-matched patients (n = 22) with congenital cataract by ultra-high performance liquid chromatography tandem-mass spectrometry. The metabolomic characteristics were visualized by principal component analysis, orthogonal partial least squares discriminant analysis and heat map. The levels of the differential metabolites were also compared between CEL patients with and without FBN1 mutations. Pathway enrichment analysis was performed by using Kyoto Encyclopedia of Genes and Genomes. Receiver operating characteristic analysis was performed to select potential biomarkers.ResultsThere were 175 differential metabolites identified between the two groups. Eight metabolites were found to be potential biomarkers in AH of CEL patients. The CEL group showed a significant increase in α-ketoglutarate and decrease in citrate, suggesting that the tricarboxylic acid (TCA) cycle was disturbed. l-proline, prolyl-hydroxyproline, and l-histidine were reduced, which prompted enhanced degradation of microfibrils and collagen. Insidious retinal nerve damage was implied because N-Acetyl-aspartylglutamic acid and N-Acetyl-l-aspartic acid were found to be significantly increased. Pathway enrichment analysis indicated that disturbances in amino acid metabolism and carbohydrate metabolism were the key processes in the pathogenesis of CEL and that TCA cycle disorder may be the driving force behind disease occurrence.ConclusionThese data reveal the characteristics in the metabolomic profiles of the AH of CEL patients, which help provide insights into the pathogenesis of this rare disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.