Abstract

High ultra-processed food consumption is associated with higher risk of CKD. However, there is no biomarker for ultra-processed food, and the mechanism through which ultra-processed food is associated with CKD is not clear. Metabolomics can provide objective biomarkers of ultra-processed food and provide important insights into the mechanisms by which ultra-processed food is associated with risk of incident CKD. Our objective was to identify serum metabolites associated with ultra-processed food consumption and investigate whether ultra-processed food-associated metabolites are prospectively associated with incident CKD. We used data from 3751 Black and White men and women (aged 45-64 years) in the Atherosclerosis Risk in Communities study. Dietary intake was assessed using a semiquantitative 66-item food frequency questionnaire, and ultra-processed food was classified using the NOVA classification system. Multivariable linear regression models were used to identify the association between 359 metabolites and ultra-processed food consumption. Cox proportional hazards models were used to investigate the prospective association of ultra-processed food-associated metabolites with incident CKD. Twelve metabolites (saccharine, homostachydrine, stachydrine, N2, N2-dimethylguanosine, catechol sulfate, caffeine, 3-methyl-2-oxovalerate, theobromine, docosahexaenoate, glucose, mannose, and bradykinin) were significantly associated with ultra-processed food consumption after controlling for false discovery rate <0.05 and adjusting for sociodemographic factors, health behaviors, eGFR, and total energy intake. The 12 ultra-processed food-related metabolites significantly improved the prediction of ultra-processed food consumption (difference in C statistics: 0.069, P <1×10 -16 ). Higher levels of mannose, glucose, and N2, N2-dimethylguanosine were associated with higher risk of incident CKD after a median follow-up of 23 years. We identified 12 serum metabolites associated with ultra-processed food consumption and three of them were positively associated with incident CKD. Mannose and N2, N2-dimethylguanosine are novel markers of CKD that may explain observed associations between ultra-processed food and CKD. This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/CJASN/2023_03_08_CJN08480722.mp3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call