Abstract

N-3 polyunsaturated fatty acids (n-3 PUFAs) play important roles in cognitive functions. However, there is a lack of knowledge on the metabolic impact of regio- and stereo-specific positioning of n-3 PUFAs in dietary triacylglycerols. Rats in a state of mild n-3 PUFA deficiency are fed daily with 360mg triacylglycerols containing DHA (docosahexaenoic acid) at sn (stereospecific numbering)-1, 2, or 3 positions and 18:0 at remaining positions, or an equal amount of tristearin for 5 days. Groups fed with n-3 deficient diet and normal n-3 adequate diet are included as controls. The metabolic profiles of the brain and liver are studied using NMR (nuclear magnetic resonance)-based metabolomics. Several metabolites of significance in membrane integrity and neurotransmission, and glutamate, in particular, are significantly lower in the brain of the groups fed with sn-1 and sn-3 DHA compared to the sn-2 DHA group. Further, the tristearin and DHA groups show a lower lactate level compared to the groups fed on normal or n-3 deficient diet, suggesting a prominent role of C18:0 in regulating energy metabolism. This study sheds light on the impact of stereospecific positioning of DHA in triacylglycerols and the role of dietary stearic acid on metabolism in the brain and liver.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.