Abstract

Age-related macular degeneration (AMD) is a leading cause of blindness worldwide, with a complex pathophysiology and phenotypic diversity. Here, we apply Similarity Network Fusion (SNF) to cluster AMD patients into putative metabolomics-derived endotypes. Using a discovery cohort of 163 AMD patients from Boston, US, and a validation cohort of 214 patients from Coimbra, Portugal, we identified four distinct metabolomics-derived endotypes with varying retinal structural and functional characteristics, confirmed across both cohorts. Patients clustered into Endotype 1 exhibited a milder form of AMD and were characterized by low levels of amino acids in specific metabolic pathways. Meanwhile, patients clustered into both Endotype 3 and 4 were associated with more severe AMD and exhibited low levels of fatty acid metabolites and elevated levels of sphingomyelins and fatty acid metabolites, respectively. These preliminary findings indicate that metabolomics-derived endotyping may offer a refined strategy for categorizing AMD patients based on their specific pathophysiological underpinnings, rather than relying solely on traditional observational clinical indicators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.