Abstract

Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the NAD+ salvage pathway. Our previous study demonstrated that deletion of NAMPT gene in projection neurons using Thy1-NAMPT−/− conditional knockout (cKO) mice causes neuronal degeneration, muscle atrophy, neuromuscular junction abnormalities, paralysis and eventually death. Here we conducted a combined metabolomic and transcriptional profiling study in vivo in an attempt to further investigate the mechanism of neuronal degeneration at metabolite and mRNA levels after NAMPT deletion. Here using steady-state metabolomics, we demonstrate that deletion of NAMPT causes a significant decrease of NAD+ metabolome and bioenergetics, a buildup of metabolic intermediates upstream of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in glycolysis, and an increase of oxidative stress. RNA-seq shows that NAMPT deletion leads to the increase of mRNA levels of enzymes in NAD metabolism, in particular PARP family of NAD+ consumption enzymes, as well as glycolytic genes Glut1, Hk2 and PFBFK3 before GAPDH. GO, KEGG and GSEA analyses show the activations of apoptosis, inflammation and immune responsive pathways and the inhibition of neuronal/synaptic function in the cKO mice. The current study suggests that increased oxidative stress, apoptosis and neuroinflammation contribute to neurodegeneration and mouse death as a direct consequence of bioenergetic stress after NAMPT deletion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.