Abstract

The utilization of gibberellic acid-3, high carbon/nitrogen ratio and salinity concentration can effectively enhance astaxanthin biosynthesis in Chromochloris zofingiensis under the heterotrophic conditions, but the underlying mechanisms remained yet to be investigated. The metabolomics analysis revealed that enhancement of the glycolysis, pentose phosphate pathways (PPP), and tricarboxylic acid (TCA) cycle led to astaxanthin accumulation under the induction conditions. The increased fatty acids can significantly increase astaxanthin esterification. The addition of appropriate concentrations of glycine (Gly) and γ-aminobutyric acid (GABA) promoted astaxanthin biosynthesis in C. zofingiensis, as well as benefiting for biomass yield. With the addition of 0.5 mM GABA, the astaxanthin yield increased to 0.35 g·L−1, which was 1.97-fold higher than that of the control. This study advanced understanding about astaxanthin biosynthesis in heterotrophic microalga, and provided novel strategies for enhanced astaxanthin production in C. zofingiensis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.