Abstract

BackgroundRecent increases in intra-litter variability in weaning weight have raised swine production costs. A contributor to this variability is the normal birth weight pig that grows at a slower rate than littermates of similar birth weight. The goal of this study was to interrogate biochemical profiles manifested in skeletal muscle originating from slow growing (SG) and faster growing littermates (control), with the aim of identifying differences in metabolic pathway utilization between skeletal muscle of the SG pig relative to its littermates. Samples of longissimus muscle from littermate pairs of pigs were collected at 21 d of age for metabolomic analysis (Metabolon, Inc., Durham, NC).ResultsBirth weights did not differ between littermate pairs of SG and Control pigs (P > 0.05). Weaning weights differed by 1.51 ± 0.19 kg (P < 0.001). Random forest (RF) analysis was effective at segregating the metabolome of muscle samples by growth rate, resulting in a predictive accuracy of 81% versus random segregation (50%). Decreases in sugars in the pentose phosphate pathway (PPP) in the longissimus of SG pigs were detected (P < 0.05). Decreases were also apparent in glycolytic intermediates (glycerol-3-phosphate and lactate) and key glycolysis-derived intermediates (glucose-6-phosphate and fructose-6-phosphate; P < 0.05). SG pigs had increased levels of phospholipids, lysolipids, diacylglycerols, and sphingolipids (P < 0.05). Pathway analysis identified a cluster of molecules associated with muscle and collagen/extracellular matrix breakdown that are increased in the SG pig (glutamate, 3-methylhistidine and hydroxylated proline moieties; P < 0.05). Nicotinate metabolism was altered in SG pigs, resulting in a 78% decrease in the nicotinamide adenine dinucleotide pool (P < 0.05).ConclusionsThese metabolomic data provide the first evidence for biochemical mechanisms that should be investigated to determine if they have a potential role in the slow growth in some normal birth weight piglets that contribute to increased intra-litter variability in weaning weights and provides essential information and potential targets for the development of nutritional intervention strategies.

Highlights

  • Recent increases in intra-litter variability in weaning weight have raised swine production costs

  • Hierarchical cluster analysis (HCA) of the dataset revealed that the samples showed modest evidence of clustering by growth rate (Fig. 2; X-axis pink/red bars), consistent with overlapping populations detected by principle component analysis (PCA)

  • Consistent with findings from random forest analysis, the results revealed a clear decrease in many sugars in the pentose phosphate pathway (PPP) in the longissimus of the slow growing pig

Read more

Summary

Introduction

Recent increases in intra-litter variability in weaning weight have raised swine production costs. A contributor to this variability is the normal birth weight pig that grows at a slower rate than littermates of similar birth weight. Recent studies have identified markers that can identify these animals at birth [5, 6] These normal birth weight animals may be metabolically perturbed prenatally, but it does not become apparent until postnatally, producing a slower growth rate than littermates of similar birth weight. The aim of this study was to interrogate biochemical profiles manifested in skeletal muscle metabolome originating from slow growing and faster growing littermates, with the aim of identifying differences in metabolic pathway utilization between slow growing pig relative to their faster growing littermates

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call