Abstract

Osteonecrosis of the femoral head (ONFH) is a disorder that causes a collapse of the femoral head, requiring subsequent total hip replacement. However, the pathogenesis of ONFH remains largely unclear. Herein, exosome metabolomics analyses were conducted to explore the pathophysiology of ONFH. This study aimed to conduct metabolic profiling of bone-derived exosomes of ONFH. 30 ONFH patients and 30 femoral neck fracture (FNF) patients were included in this study. Exosomes were harvested from the femoral head by using ultracentrifugation. Ultraperformance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) was performed in combination with multivariate statistical analysis to reveal and provided new insight into identify the global metabolic profile of ONFH. The results of transmission electron microscope (TEM), nanoparticle tracking analysis (NTA), and Western blots indicated that the microvesicles isolated from the femoral head were exosomes. Several compounds were identified, including lipids and lipid-like molecules, amino acids, peptides, organooxygen compounds. 44 differential metabolites were screened between ONFH and FNF patients. The up-and down-regulation of Riboflavin metabolism, Pantothenate and CoA biosynthesis, Glycerophospholipid metabolism, and Sphingolipid metabolism were associated with ONFH pathophysiology. Our results suggest that metabolomics has huge prospects for elucidating pathophysiology of ONFH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call