Abstract

Numerous epidemiological studies have demonstrated links between short-term ozone exposure to various adverse health outcomes, but some ozone-induced pathological mechanisms remain unclear. To fill this knowledge gap, we enrolled 36 healthy young adults living in high-ozone areas and performed an untargeted metabolomic analysis in serum collected before, during, and after their travel to a low-ozone scenic area. Reviewing the literature, we found 16 metabolites significantly associated with ozone, pointing to neurological health, type 2 diabetes (T2D) risk, and cardiovascular health. Notably, we observed significant changes in these 16 metabolites from the ozone reduction when participants traveled from the campus to the scenic area (adjusted p-value < 0.05). However, when ozone increased after participants returned to campus from the scenic area, we observed that T2D risk and cardiovascular health-related metabolites returned to their original state (adjusted p-value < 0.05), but neurological health-related metabolites did not change significantly with ozone exposure. Our study showed that ozone exposure was linked to prompt alterations in serum metabolites related to cardiovascular health and T2D risk but less sensitive changes in neurological health-related metabolites. Among many lipids, free fatty acids and acylcarnitines were the most sensitive compounds positively associated with changes in ozone exposure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call