Abstract

BackgroundSeveral types of networks, such as transcriptional, metabolic or protein-protein interaction networks of various organisms have been constructed, that have provided a variety of insights into metabolism and regulation. Here, we seek to exploit the reaction-based networks of three organisms for comparative genomics. We use concepts from spectral graph theory to systematically determine how differences in basic metabolism of organisms are reflected at the systems level and in the overall topological structures of their metabolic networks.Methodology/Principal FindingsMetabolome-based reaction networks of Mycobacterium tuberculosis, Mycobacterium leprae and Escherichia coli have been constructed based on the KEGG LIGAND database, followed by graph spectral analysis of the network to identify hubs as well as the sub-clustering of reactions. The shortest and alternate paths in the reaction networks have also been examined. Sub-cluster profiling demonstrates that reactions of the mycolic acid pathway in mycobacteria form a tightly connected sub-cluster. Identification of hubs reveals reactions involving glutamate to be central to mycobacterial metabolism, and pyruvate to be at the centre of the E. coli metabolome. The analysis of shortest paths between reactions has revealed several paths that are shorter than well established pathways.ConclusionsWe conclude that severe downsizing of the leprae genome has not significantly altered the global structure of its reaction network but has reduced the total number of alternate paths between its reactions while keeping the shortest paths between them intact. The hubs in the mycobacterial networks that are absent in the human metabolome can be explored as potential drug targets. This work demonstrates the usefulness of constructing metabolome based networks of organisms and the feasibility of their analyses through graph spectral methods. The insights obtained from such studies provide a broad overview of the similarities and differences between organisms, taking comparative genomics studies to a higher dimension.

Highlights

  • Recent advances in high throughput technologies and network theory have made it possible to reconstruct and analyse large genome-scale networks of organisms in silico

  • The top 50 graph spectral (GS) hubs of M. tuberculosis and M. leprae exclusively comprised reactions involving L-glutamate while the top GS hubs in E. coli only consisted of reactions involving pyruvate

  • The results presented in this work show that the reaction networks of M. tuberculosis, M. leprae and E. coli are scale-free, small-world networks that differ significantly from random networks

Read more

Summary

Introduction

Recent advances in high throughput technologies and network theory have made it possible to reconstruct and analyse large genome-scale networks of organisms in silico. The transcriptional networks based on microarray data, protein-protein interaction networks based on high-throughput yeast two-hybrid type of experiments and metabolic networks based on reaction annotation of the individual proteins coded by the genome are some examples. Several of these studies have focused on elucidating the general principles underlying the structure and organisation of metabolic networks of a large number of organisms. Several types of networks, such as transcriptional, metabolic or protein-protein interaction networks of various organisms have been constructed, that have provided a variety of insights into metabolism and regulation. The insights obtained from such studies provide a broad overview of the similarities and differences between organisms, taking comparative genomics studies to a higher dimension

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.