Abstract

The Theobroma cacao presents a wide diversity in pod color among different cultivars. Although flavonoid biosynthesis has been studied in many plants, molecular mechanisms governing the diversity of coloration in cacao pods are largely unknown. The flavonoid metabolite profiles and flavonoid biosynthetic gene expression in the pod exocarps of light green pod 'TAS 410' (GW), green pod 'TAS 166' (GF), and mauve pod 'TAS 168' (PF) were determined. Changes in flavonoid metabolites, particularly the anthocyanins (cyanidin 3-O-galactoside, cyanidin 3-O-glucoside, and cyanidin O-syringic acid) were significantly up-accumulated in the mauve phenotype (PF) compared to the light green or green phenotypes, endowing the pod color change from light green or green to mauve. Consistently, the PF phenotype showed different expression patterns of flavonoid biosynthetic structural genes in comparison with GW/GF phenotypes. The expression level of LAR and ANR in GW/GF was significantly higher than PF, while the expression level of UFGT in GW/GF was lower than PF. These genes likely generated more anthocyanins in the exocarps samples of PF than that of GW/GF. Simultaneously, colorless flavan-3-ols (catechin, epicatechin and proanthocyanidin) content in the exocarp samples of PF was lower than GW/GF. Additionally, MYB (gene18079) and bHLH (gene5045 and gene21575) may participate in the regulation of the pod color. This study sheds light on the molecular basis of cacao pod color variation, which will contribute to breeding cacao varieties with enhanced flavonoid profiles for nutritional applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call