Abstract

BackgroundPolymalic acid (PMA) is a water-soluble biopolymer with many attractive properties for food and pharmaceutical applications mainly produced by the yeast-like fungus Aureobasidium pullulans. Acid hydrolysis of PMA, resulting in release of the monomer l-malic acid (MA), which is widely used in the food and chemical industry, is a competitive process for producing bio-based platform chemicals.ResultsIn this study, the production of PMA and MA from sucrose and sugarcane molasses by A. pullulans was studied in shake flasks and bioreactors. Comparative metabolome analysis of sucrose- and glucose-based fermentation identified 81 intracellular metabolites and demonstrated that pyruvate from the glycolysis pathway may be a key metabolite affecting PMA synthesis. In silico simulation of a genome-scale metabolic model (iZX637) further verified that pyruvate carboxylase (pyc) via the reductive tricarboxylic acid cycle strengthened carbon flux for PMA synthesis. Therefore, an engineered strain, FJ-PYC, was constructed by overexpressing the pyc gene, which increased the PMA titer by 15.1% compared with that from the wild-type strain in a 5-L stirred-tank fermentor. Sugarcane molasses can be used as an economical substrate without any pretreatment or nutrient supplementation. Using fed-batch fermentation of FJ-PYC, we obtained the highest PMA titers (81.5, 94.2 g/L of MA after hydrolysis) in 140 h with a corresponding MA yield of 0.62 g/g and productivity of 0.67 g/L h.ConclusionsWe showed that integrated metabolome- and genome-scale model analyses were an effective approach for engineering the metabolic node for PMA synthesis, and also developed an economical and green process for PMA and MA production from renewable biomass feedstocks.

Highlights

  • Polymalic acid (PMA) is a water-soluble biopolymer with many attractive properties for food and pharmaceutical applications mainly produced by the yeast-like fungus Aureobasidium pullulans

  • A total of 33.91 ± 3.70 g/L PMA (~ 38.98 g/L MA after hydrolysis) were produced from ~ 90 g/L sucrose in 96 h via batch fermentation; this was increased by 40.7% compared with that of glucose (24.10 ± 3.30 g/L)

  • These results showed that sucrose present in sugarcane molasses was the most suitable sugar for PMA biosynthesis

Read more

Summary

Introduction

Polymalic acid (PMA) is a water-soluble biopolymer with many attractive properties for food and pharmaceutical applications mainly produced by the yeast-like fungus Aureobasidium pullulans. Acid hydrolysis of PMA, resulting in release of the monomer l-malic acid (MA), which is widely used in the food and chemical industry, is a competitive process for producing bio-based platform chemicals. Polymalic acid (PMA) is a water-soluble biopolymer composed of l-malic acid (MA) monomers and is mainly produced by the yeast-like fungus Aureobasidium pullulans [1]. Due to its unique properties, including high water solubility, biocompatibility, and biodegradability, PMA has attracted an increasing attention as a drug carrier or biomaterial in the past few years and is expected to have applications in the preparation of various polymeric micelles, microparticles, nanoconjugates, and nanoparticles for drug delivery systems [2,3,4,5]. MA is an important organic acid and is regarded as a C4 platform chemical in the food and pharmaceutical industries, for which there is a strong global market of over 600,000 tons/year, with an annual growth rate of 4% [7, 8]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.