Abstract

The investigation of the toxic effects of cadmium (Cd) on rice field invertebrates has attracted accumulating attention. Spider grants a novel insight into the impacts of Cd stress on invertebrates, but the effects of Cd-induced toxicity and molecular response mechanism of related metabolites in spider's egg sacs remain elusive. This investigation found that Cd stress distinctively decreased vitellogenin (Vg) content and hatched spiderlings numbers in the egg sac of Pardosa pseudoannulata. In addition, Cd stress exerted oxidative stress in the egg sac, manifested as the increase of superoxide dismutase and malondialdehyde levels. Further results showed that Cd exposure could affect egg sacs' energy metabolism, including protein and lipid contents. Metabolome analysis generated 73 up-regulated and 63 down-regulated differentially expressed metabolites (DEMs), mainly affecting phenylalanine metabolism, alpha-linolenic acid metabolism, pentose phosphate pathway, and biosynthesis of amino acids. Specifically, pathway analysis showed that Cd exposure down-regulated several key factors, including tyrosine, L-phenylalanine, O-phospho-L-serine, and L-cystathionine, and inhibited the metabolism of amino acids in the egg sacs. The subsequent correlation analysis found that three metabolite indicators, 9-Oxo-ODE, PG (17:0/18:2), and PE (17:0/20:5), were the dominant contributors to the egg sec's properties (i.e., Vg content and gained spiderlings). Collectively, this study hopes to provide valuable data for the protection of rice field spiders and offer novel perspectives for Cd pollution assessment and management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call