Abstract

BackgroundClostridium thermocellum is a promising microorganism for conversion of cellulosic biomass to biofuel, without added enzymes; however, the low ethanol titer produced by strains developed thus far is an obstacle to industrial application.ResultsHere, we analyzed changes in the relative concentration of intracellular metabolites in response to gradual addition of ethanol to growing cultures. For C. thermocellum, we observed that ethanol tolerance, in experiments with gradual ethanol addition, was twofold higher than previously observed in response to a stepwise increase in the ethanol concentration, and appears to be due to a mechanism other than mutation. As ethanol concentrations increased, we found accumulation of metabolites upstream of the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) reaction and depletion of metabolites downstream of that reaction. This pattern was not observed in the more ethanol-tolerant organism Thermoanaerobacterium saccharolyticum. We hypothesize that the Gapdh enzyme may have different properties in the two organisms. Our hypothesis is supported by enzyme assays showing greater sensitivity of the C. thermocellum enzyme to high levels of NADH, and by the increase in ethanol tolerance and production when the T. saccharolyticum gapdh was expressed in C. thermocellum.ConclusionsWe have demonstrated that a metabolic bottleneck occurs at the GAPDH reaction when the growth of C. thermocellum is inhibited by high levels of ethanol. We then showed that this bottleneck could be relieved by expression of the gapdh gene from T. saccharolyticum. This enzyme is a promising target for future metabolic engineering work.

Highlights

  • Clostridium thermocellum is a promising microorganism for conversion of cellulosic biomass to biofuel, without added enzymes; the low ethanol titer produced by strains developed far is an obstacle to industrial application

  • In C. thermocellum, the mechanism of tolerance has been attributed to both changes in membrane properties [19, 20, 23, 24], and metabolic enzymes, in particular, the bifunctional acetaldehyde-CoA/alcohol dehydrogenase gene [18, 21]

  • Thermoanaerobacter thermohydrosulfuricus, Lovitt et al found that selection for ethanol tolerance resulted in several metabolic changes, including the elimination of NADH-linked alcohol dehydrogenase (ADH-NADH) activity, elimination of Ferredoxin-NAD+ activity, and a change in the properties of the Gapdh enzyme that made it less sensitive to inhibition by NADH [25]

Read more

Summary

Introduction

Clostridium thermocellum is a promising microorganism for conversion of cellulosic biomass to biofuel, without added enzymes; the low ethanol titer produced by strains developed far is an obstacle to industrial application. In C. thermocellum, the mechanism of tolerance has been attributed to both changes in membrane properties [19, 20, 23, 24], and metabolic enzymes, in particular, the bifunctional acetaldehyde-CoA/alcohol dehydrogenase gene (adhE) [18, 21]. Thermoanaerobacter thermohydrosulfuricus, Lovitt et al found that selection for ethanol tolerance resulted in several metabolic changes, including the elimination of NADH-linked alcohol dehydrogenase (ADH-NADH) activity, elimination of Ferredoxin-NAD+ activity, and a change in the properties of the Gapdh enzyme that made it less sensitive to inhibition by NADH [25]. The genetic basis of the elimination of ADH-NADH activity was not determined; it is reasonable to suspect that this may have been due to a mutation in the adhE gene

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call