Abstract

Plant growth promoting rhizobacteria (PGPR) are extensively used as biofertilizers to improve the soil nutrition for a variety of crop plants. The plant-PGPR interaction, with special reference to chemical signalling molecules is not understood clearly, unlike other beneficial plant-microbe interactions. Chemo-attraction of a PGPR from soil microbial pool towards a plant could be dependent on some of the molecules in the plant root exudates (REs), similar to the beneficial association of legume-rhizobia. In this study, a few functional properties of PGPR like growth, chemotaxis, and biofilm formation by two PGPR strains viz., Bacillus sonorensis RS4 and Pseudomonas aeruginosa RP2 were assessed in the presence of groundnut REs. Functional properties of both the strains were significantly influenced by the REs in a strain-dependent manner. Metabolite profiling of the REs from PGPR-bacterized (RS4 or RP2) and non-bacterized seedlings was performed with GC–MS/MS after 12 and 24 days of growth. A total of 75 metabolites were detected in groundnut REs. Threonine and glyoxylic oxime acid were detected in RP2-bacterized REs, while serine, pentanoic acid, glucopyranoside, tartaric acid, and 2-pyrrolidinone were detected in REs of seedlings bacterized with RP2 and RS4. The results suggested that the PGPR induced distinct variations in the REs. Identification of the interaction-specific metabolites will be useful to develop effective PGPR based bio-formulations for better PGPR colonization and improving crop yields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.