Abstract

Secondary metabolites (toxins) production during harmful algal blooms (HABs) further increases the public health risks associated with water quality deterioration from anthropogenic eutrophication. In the present study, the dynamic pattern in the production of metabolites under different nutrient conditions in Ceratium-dominated spring HABs was investigated in Pengxi River, China. Results revealed five (5) important toxins all attributable to the Dinophyceae including azaspiracid 2&4, okadaic acid, tetrodotoxin, brevetoxin, and saxitoxin, each exhibiting certain levels of specificity to the ecosystem enrichments. In effect, while the production of azaspiracid 2 and okadaic acid was N-driven, azaspiracid 4 and tetrodotoxin were enhanced by Ca enrichment. The ambient HABs community structure shows absolute ecosystem dominance by a dinoflagellate, Ceratium hirundinella with relative abundance ((RA = 78.81%, p ˂ 0.05). However, P enrichment triggered a slight shift (p ≥ 0.05) in the HABs species structure within the cyanobacteria strictly represented by Chroococcus minor (RA = 26.60%) and Dolichospermum circinalis (RA = 23.91%) initiating possible emergency dominance. The effect of nutrient addition on biomass production as chlorophyll-a (Chl-a) confirmed a P-limited ecosystem juxtaposed by a secondary limitation by Ca. The significant stimulation on biomass as Chl-a from day 3 through day 4 by N and the multiple enrichments designated as NPFeCa was attributed to luxury consumption rather than limitation following N repletion thus delaying biomass accumulation. The study, therefore, offers useful insights into the dynamic pattern of toxins during spring HABs while it also provides comprehensive knowledge of the HABs impact predictions in the TGR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call