Abstract
ABSTRACTRoot exudate is derived from plant metabolites and its composition is affected by plant nutrient status. A deficiency of mineral nutrients, such as nitrogen (N) and phosphorus (P), strongly affects the type and amount of plant metabolites. We applied a metabolite profiling technique to investigate root exudates of rice plants under N and P deficiency. Oryza sativa was grown in culture solution containing two N levels (0 and 60 mg N L−1) or two P levels (0 and 8 mg P L−1). Shoot extracts, root extracts, and root exudates were obtained from the rice plants 5 and 15 days after transplanting and their metabolites were determined by capillary electrophoresis/time-of-flight mass spectrometry. Shoot N concentration and dry weight of rice plants grown at −N level were lower than those of plants grown at +N level. Shoot P concentration and dry weight of rice plants grown at −P level were lower than those of plants grown at +P level. One hundred and thirty-two, 127, and 98 metabolites were identified in shoot extracts, root extracts, and root exudates, respectively, at the two N levels. One hundred and thirty-two, 128, and 99 metabolites were identified in shoot extracts, root extracts, and root exudates, respectively, at the two P levels. Seventy-seven percent of the metabolites were exuded to the rhizosphere. The concentrations of betaine, gamma-aminobutyric acid, and glutarate in root exudates were higher at both −N and −P levels than at their respective high levels. The concentration of spermidine in root exudates was lower at both −N and −P levels than at their respective high levels. The concentrations of the other metabolites in root exudates were affected differently by plant N or P status. These results suggest that rice roots actively release many metabolites in response to N and P deficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.