Abstract

Grain weight and protein content will be reduced and increased, respectively, when barley is subjected to water stress after anthesis, consequently deteriorating the malt quality. However, such adverse impact of water stress differs greatly among barley genotypes. In this study, two Tibetan wild barley accessions and two cultivated varieties differing in water stress tolerance were used to investigate the genotypic difference in metabolic profiles during grain-filling stage under drought condition. Totally, 71 differently accumulated metabolites were identified, including organic acids, amino acids/amines, and sugars/sugar alcohols. Their relative contents were significantly affected by water stress for all genotypes and differed distinctly between the wild and cultivated barleys. The principal component analysis of metabolites indicated that the Tibetan wild barley XZ147 possessed a unique response to water stress. When subjected to water stress, the wild barley XZ147 showed the most increase of β-amylase activity among the four genotypes, as a result of its higher lysine content, less indole-3-acetic acid (IAA) biosynthesis, more stable H2O2 homeostasis, and more up-regulation of BMY1 gene. On the other hand, XZ147 had the most reduction of β-glucan content under water stress than the other genotypes, which could be explained by the faster grain filling process and the less expression of β-glucan synthase gene GSL7. All these results indicated a great potential for XZ147 in barley breeding for improving water stress tolerance.

Highlights

  • Global warming and climate change have become a primary concern worldwide (Intergovernmental Panel on Climate Change [IPCC], 2012)

  • Drought stress caused a significant decrease in β-glucan content of barley grains, in particular for XZ147 (37.38%) (Figure 1B)

  • Β-amylase activity was remarkably increased in XZ147, TL43, and Tr by 93.76, 37.57, and 32.55% under water stress compared with the control, but only a tiny increase (11.52%) in β-amylase activity was seen for XZ5 (Figure 1C)

Read more

Summary

Introduction

Global warming and climate change have become a primary concern worldwide (Intergovernmental Panel on Climate Change [IPCC], 2012). Since the middle of the 20th century, there have been considerable changes in the nature of droughts, extreme weather events, and floods in many regions of the world, which caused marked damage to crop production and great threat to global food security (Wheeler and Von Braun, 2013; Lesk et al, 2016). The effect of drought stress on crop growth, yield, and quality was increasingly becoming a major issue of scientific concerns (reviewed by Kang et al, 2009; Alqudah et al, 2010). The occurrence of water stress at the reproductive stage is the most critical, as it strongly impacts yield and seed quality. Understanding the response mechanism of drought stress at crop reproductive stage will help to partially address some of concerns for improving crop tolerance to drought stress and to minimize consequent impacts

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call