Abstract

Halobenzoquinones (HBQs) are emerging disinfection byproducts (DBPs) of high toxicity and also are shared active toxic intermediates of multiple halogenated organic pollutants. Due to the strong oxidizing property and electrophilicity, HBQs exhibit extremely diverse metabolism pathways in organisms. The identification of toxic-decisive metabolites is pivotal, albeit challenging, for understanding the toxicity mechanisms of HBQs. We employed dibromo-benzoquinone (DBBQ) as a representative HBQ, and established a systematic analytical strategy using high-resolution mass spectrometry, which collectively coupled suspect screening (SS), mass defect filtering (MDF), product ion filtering (PIF), isotopic signature filtering (ISF), and molecular networking (MN). As a result, 20 biotransformation products of DBBQ were identified in vivo and in vitro, involving metabolism reactions such as hydroxylation, methylation, methoxylation, acetylation, sulfonation, glucuronidation, glutathionylation, dimerization, and conjugation with amino acids or fatty acids. Quantitative structure-activity relationship (QSAR) analysis and cytotoxicity experiments consistently demonstrated the significantly high toxicity of the fatty acid conjugate compared to the parent compound DBBQ and other metabolites, pinpointing the important role of the fatty acid conjugation in determining the metabolism and toxicity of HBQs. The research conducted a comprehensive evaluation of the metabolism of a typical HBQ with the combination of multiple analytical and toxicity characterization methods, therefore screen out the most important metabolism pathway of HBQs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.