Abstract

Peaches and nectarines [Prunus persica (L.) Batsch] are among the most exported fresh fruit from Chile to the Northern Hemisphere. Fruit acceptance by final consumers is defined by quality parameters such as the size, weight, taste, aroma, color, and juiciness of the fruit. In peaches and nectarines, the balance between soluble sugars present in the mesocarp and the predominant organic acids determines the taste. Biomass production and metabolite accumulation by fruits occur during the different developmental stages and depend on photosynthesis and carbon export by source leaves. Carbon supply to fruit can be potentiated through the field practice of thinning (removal of flowers and young fruit), leading to a change in the source–sink balance favoring fruit development. Thinning leads to fruit with increased size, but it is not known how this practice could influence fruit quality in terms of individual metabolite composition. In this work, we analyzed soluble metabolite profiles of nectarine fruit cv “Magique” at different developmental stages and from trees subjected to different thinning treatments. Mesocarp metabolites were analyzed throughout fruit development until harvest during two consecutive harvest seasons. Major polar compounds such as soluble sugars, amino acids, organic acids, and some secondary metabolites were measured by quantitative 1H-NMR profiling in the first season and GC-MS profiling in the second season. In addition, harvest and ripening quality parameters such as fruit weight, firmness, and acidity were determined. Our results indicated that thinning (i.e., source–sink imbalance) mainly affects fruit metabolic composition at early developmental stages. Metabolomic data revealed that sugar, organic acid, and phenylpropanoid pathway intermediates at early stages of development can be used to segregate fruits impacted by the change in source–sink balance. In conclusion, we suggest that the metabolite profile at early stages of development could be a metabolic predictor of final fruit quality in nectarines.

Highlights

  • Peaches and nectarines [Prunus persica (L.) Batsch] are among the most important fruit crops with a world annual production of approximately 25 million tons (Food and Agriculture Organization of the United Nations (FAOSTAT), 2018)

  • In the first season, thinning was performed earlier than the second season: 42 days after bloom (DAB) compared to 63 DAB

  • In the first season, thinning was performed at 42 DAB at the middle of the first exponential growth phase (S1), while in the second season, thinning was performed at 63 DAB, which corresponds to the end of S1

Read more

Summary

Introduction

Peaches and nectarines [Prunus persica (L.) Batsch] are among the most important fruit crops with a world annual production of approximately 25 million tons (Food and Agriculture Organization of the United Nations (FAOSTAT), 2018) They belong to the Rosaceae family, whose species have developed a wide array of fruit types, including drupe, pome, drupetum, achene, and achenetum. P. persica is a climacteric fruit in which development and ripening are coordinated processes involving physiological, molecular, and biochemical changes (Moing et al, 1998; Lombardo et al, 2011) Fruit growth in this species follows a double sigmoidal curve with four stages clearly defined (S1– S4; Chalmers and van den Ende, 1975; Tonutti et al, 1991). Ethylene induces changes in color, texture, flavor, and aroma, which all together improve the fruit nutritional value and attractiveness promoting its consumption and seed dispersal (Liu et al, 2004; Goff and Klee, 2006)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call