Abstract

Development of genome-scale metabolic models and various constraints-based flux analyses have enabled more sophisticated examination of metabolism. Recently reported metabolite essentiality studies are also based on the constraints-based modeling, but approaches metabolism from a metabolite-centric perspective, providing synthetic lethal combination of reactions and clues for the rational discovery of antibacterials. In this study, metabolite essentiality analysis was applied to the genome-scale metabolic models of four microorganisms: Escherichia coli, Helicobacter pylori, Mycobacterium tuberculosis and Staphylococcus aureus. Furthermore, chokepoints, metabolites surrounded by enzymes that uniquely consume and/or produce them, were also calculated based on the network properties of the above organisms. A systematic drug targeting strategy was developed by combining information from these two methods. Final drug target metabolites are presented and examined with knowledge from the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call