Abstract
Currently, there are no reliable biomarkers available that can aid early differential diagnosis of reactive arthritis (ReA) from other inflammatory joint diseases. Metabolic profiling of synovial fluid (SF)-obtained from joints affected in ReA-holds great promise in this regard and will further aid monitoring treatment and improving our understanding about disease mechanism. As a first step in this direction, we report here the metabolite specific assignment of 1 H and 13 C resonances detected in the NMR spectra of SF samples extracted from human patients with established ReA. The metabolite characterization has been carried out on both normal and ultrafiltered (deproteinized) SF samples of eight ReA patients (n=8) using high-resolution (800MHz) 1 H and 1 H─13 C NMR spectroscopy methods such as one-dimensional 1 H CPMG and two-dimensional J-resolved1 H NMR and homonuclear 1 H─1 H TOCSY and heteronuclear1 H─13 C HSQC correlation spectra. Compared with normal SF samples, several distinctive 1 H NMR signals were identified and assigned to metabolites in the 1 H NMR spectra of ultrafiltered SF samples. Overall, we assigned 53 metabolites in normal filtered SF and 64 metabolites in filtered pooled SF sample compared with nonfiltered SF samples for which only 48 metabolites (including lipid/membrane metabolites as well) have been identified. The established NMR characterization of SF metabolites will serve to guide future metabolomics studies aiming to identify/evaluate the SF-based metabolic biomarkers of diagnostic/prognostic potential or seeking biochemical insights into disease mechanisms in a clinical perspective.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.