Abstract

High-carbohydrate diets (HCD) are favoured by the aquaculture industry for economic reasons, but they can produce negative impacts on growth and induce hepatic steatosis. We hypothesised that the mechanism behind this is the reduction of hepatic betaine content. We further explored this mechanism by supplementing betaine (1%) to the diet of a farmed fish Megalobrama amblycephala. Four diet groups were designed: control (CD, 27.11% carbohydrates), high-carbohydrate (HCD, 36.75% carbohydrates), long-term betaine (LBD, 35.64% carbohydrates) and short-term betaine diet (SBD; 12weeks HCD + 4weeks LBD). We analysed growth performance, body composition, liver condition, and expression of genes and profiles of metabolites associated with betaine metabolism. HCD resulted in poorer growth and liver health (compared to CD), whereas LBD improved these parameters (compared to HCD). HCD induced the expression of genes associated with glucose, serine and cystathionine metabolisms, and (non-significantly, p = .20) a betaine-catabolizing enzyme betaine-homocysteine-methyltransferase; and decreased the content of betaine, methionine, S-adenosylhomocysteine and carnitine. Betaine supplementation (LBD) reversed these patterns, and elevated betaine-homocysteine-methyltransferase, S-adenosylmethionine and S-adenosylhomocysteine (all p ≤ .05). We hypothesise that HCD reduced the content of hepatic betaine by enhancing the activity of metabolic pathways from glucose to homocysteine, reflected in increased glycolysis, serine metabolism, cystathionine metabolism and homocysteine remethylation. Long-term dietary betaine supplementation improved the negative impacts of HCD, inculding growth parameters, body composition, liver condition, and betaine metabolism. However, betaine supplementation may have caused a temporary disruption in the metabolic homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.