Abstract

Jerusalem artichokes are a perennial crop with high drought tolerance and high value as a raw material to produce biofuels, functional feed, and food. However, there are few comprehensive metabolomic studies on Jerusalem artichokes under drought conditions. Methods: Ultra-performance liquid chromatography and tandem mass spectrometry were used to identify differential metabolites in Jerusalem artichoke seedling leaves under polyethylene glycol (PEG) 6000-simulated drought stress at 0, 18, 24, and 36 h. Results: A total of 661 metabolites and 236 differential metabolites were identified at 0 vs. 18, 18 vs. 24, and 24 vs. 36 h. 146 differential metabolites and 56 common were identified and at 0 vs. 18, 24, and 36 h. Kyoto Encyclopedia of Genes and Genomes enrichment identified 236 differential metabolites involved in the biosynthesis of secondary metabolites and amino acids. Metabolites involved in glycolysis, phenolic metabolism, tricarboxylic cycle, glutamate-mediated proline biosynthesis, urea cycle, amino acid metabolism, unsaturated fatty acid biosynthesis, and the met salvage pathway responded to drought stress. Conclusion: A metabolic network in the leaves of Jerusalem artichokes under drought stress is proposed. These results will improve understanding of the metabolite response to drought stress in Jerusalem artichokes and develop a foundation for breeding drought-resistant varieties.

Highlights

  • Drought stress is a major direct environmental factor, adversely affecting agricultural crop productivity and economic losses worldwide, with the effects of drought ranking first among all natural disasters [1,2,3,4]

  • The results showed that the metabolism between drought treatments at different times was clearly separated in the first component (PC1), indicating drought stress treatment significantly affected the metabolism of H

  • We detected that cinnamic acid and caffeic acid significantly increased under polyethylene glycol (PEG)-simulated drought stress, indicating the key role of flavonoids in response to drought stresses

Read more

Summary

Introduction

Drought stress is a major direct environmental factor, adversely affecting agricultural crop productivity and economic losses worldwide, with the effects of drought ranking first among all natural disasters [1,2,3,4]. As a result of the increasing world population, urban expansion, and the scarcity of global water, an increasing amount of arable land has lost the ability to produce food and forced agricultural production into marginal areas such as desert and land subjected to soil salinization [5,6]. Enhancing drought resistance in agricultural crop breeding is one of the most important goals. Jerusalem artichoke (H. tuberosus L.) is a hardy perennial crop in the family Asteraceae, with high adaptability to barren lands, such as salinized land and soil with high sediment, and is suitable for growing in dry, cold, and sunny climates [7,8]. Because of its diverse uses and high adaption to infertile lands, Jerusalem artichokes have become a rapidly developing agricultural crop in recent years

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call