Abstract
Diabetes mellitus (DM) can lead to diabetic ulcers (DUs), which are the most severe complications. Due to the need for more accurate patient classifications and diagnostic models, treatment and management strategies for DU patients still need improvement. The difficulty of diabetic wound healing is caused closely related to biological metabolism and immune chemotaxis reaction dysfunction. Therefore, the purpose of our study is to identify metabolic biomarkers in patients with DU and construct a molecular subtype-specific prognostic model that is highly accurate and robust. RNA-sequencing data for DU samples were obtained from the Gene Expression Omnibus (GEO) database. DU patients and normal individuals were compared regarding the expression of metabolism-related genes (MRGs). Then, a novel diagnostic model based on MRGs was constructed with the random forest algorithm, and classification performance was evaluated utilizing receiver operating characteristic (ROC) analysis. The biological functions of MRGs-based subtypes were investigated using consensus clustering analysis. A principal component analysis (PCA) was conducted to determine whether MRGs could distinguish between subtypes. We also examined the correlation between MRGs and immune infiltration. Lastly, qRT-PCR was utilizedto validate the expression of the hub MRGs with clinical validations and animal experimentations. Firstly, 8 metabolism-related hub genes were obtained by random forest algorithm, which could distinguish the DUs from normal samplesvalidated by the ROC curves. Secondly, DU samples could be consensus clustered into three molecular classifications by MRGs, verified by PCA analysis. Thirdly, associations between MRGs and immune infiltration were confirmed, with LYN and Type 1 helper cell significantly positively correlated; RHOH and TGF-β family remarkably negatively correlated. Finally, clinical validations and animal experiments of DU skin tissue samples showed thatthe expressions of metabolic hub genes in the DU groups were considerably upregulated, including GLDC, GALNT6, RHOH, XDH, MMP12, KLK6, LYN, and CFB. The current study proposed an auxiliary MRGs-based DUs model while proposing MRGs-based molecular clustering and confirmed the association with immune infiltration, facilitating the diagnosis and management of DU patients and designing individualized treatment plans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.