Abstract

One of the forms of phosphate activated glutaminase (PAG) is associated with the inner mitochondrial membrane. It has been debated whether glutamate formed from glutamine in the reaction catalyzed by PAG has direct access to mitochondrial or cytosolic metabolism. In this study, metabolism of [U-(13)C]glutamine (3 mM) or [U-(13)C]glutamate (10 mM) was investigated in isolated rat brain mitochondria. The presence of a functional tricarboxylic (TCA) cycle in the mitochondria was tested using [U-(13)C]succinate as substrate and extensive labeling in aspartate was seen. Accumulation of glutamine into the mitochondrial matrix was inhibited by histidine (15 mM). Extracts of mitochondria were analyzed for labeling in glutamine, glutamate and aspartate using liquid chromatography-mass spectrometry. Formation of [U-(13)C]glutamate from exogenous [U-(13)C]glutamine was decreased about 50% (P<0.001) in the presence of histidine. In addition, the (13)C-labeled skeleton of [U-(13)C]glutamine was metabolized more vividly in the tricarboxylic acid (TCA) cycle than that from [U-(13)C]glutamate, even though glutamate was labeled to a higher extent in the latter condition. Collectively the results show that transport of glutamine into the mitochondrial matrix may be a prerequisite for deamidation by PAG.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.