Abstract

ABSTRACTHuman and B6C3F1 mouse liver tissue was exposed to trichloroethylene (TCE) to determine metabolic rate constants. Using a novel volatile exposure system based on precision-cut tissue explants, TCE biometabolism was measured by appearance of a major oxidative product trichloroacetic acid (TCA). TCE metabolic rate was linear in this system to 150 minutes, allowing calculation of Michaelis-Menten kinetic parameters, Km and V max. Both human and mouse liver explants tolerated exposure to TCE up to 750 äM without evidence of cytotoxicity. Km values for mouse and human tissue were 215 and 30.6 äM TCE, respectively, and Vmax estimates were 6.14 and 0.47 ng TCA produced per mg protein min−1, mouse and human, respectively. These results are consistent with other reports in describing the greater capacity of mice to metabolize TCE. Metabolic differences such as these must be considered when interpreting the implications of TCE-induced toxicity in rodent models for human health assessment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.