Abstract
This study was carried out to examine the metabolism of [1-14C]-, [6-14C]-, and [5-3H]glucose by oocyte-cumulus cell complexes (OCC) and denuded oocytes (DO) and to test the hypothesis that metabolism of glucose through the pentose phosphate pathway is associated with meiotic induction. OCC or DO were cultured in hanging drops suspended from the cap of a microfuge tube, with NaOH serving as a trap to collect released 3H2O or 14CO2. Preliminary experiments established that this culture system supports both spontaneous and ligand-induced meiotic maturation. An initial time course experiment (1.5-6 h) showed that hypoxanthine-treated OCC from eCG-primed animals metabolized glucose principally via glycolysis, with an increase to 2.7-fold in response to FSH. Though more [1-14C]glucose was oxidized than [6-14C]glucose, its metabolism was about two orders of magnitude less than that of [5-3H]glucose. Also, FSH significantly increased oxidation of [1-14C]glucose but not [6-14C]glucose, indicating a preferential activation of the pentose phosphate pathway. Pyrroline carboxylate, an activator of the pentose phosphate pathway, increased the activity of this pathway to over 2-fold but failed to affect glucose oxidation through the tricarboxylic acid cycle. Glycolytic metabolism was increased by 25%. The addition of pyruvate to pyruvate-free medium resulted in significant reduction in the metabolism of all three glucose analogues. In OCC retrieved from hCG-injected, primed mice and cultured under hormone-free conditions, metabolic responses were similar to those in FSH-treated complexes cultured in hypoxanthine. DO metabolized glucose, but at a much reduced rate when compared to OCC. Pyruvate reduced the consumption of all three glucose analogues by DO. Pyrroline carboxylate reduced [5-3H]glucose metabolism by DO but had little effect on [1-14C]- and [6-14C]glucose oxidation. These data demonstrate metabolism of glucose by both DO and OCC, but reveal that cumulus cells are more active than the oocyte in this regard. In addition, induction of maturation by FSH, hCG, or pyrroline carboxylate was accompanied by a significant increase in the oxidation of [1-14C]glucose but not [6-14C]glucose by OCC, supporting a proposed role for the pentose phosphate pathway in meiotic induction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.