Abstract

ObjectivesThe present study evaluated the trans-dentinal effect of light emitting diodes (LEDs) irradiation on the metabolism of odontoblast-like cells. MethodsSeventy-two dentin discs (0.2mm thick) were obtained from human molar teeth. MDPC-23 cells (20,000 cells/disc) were seeded on the pulpal side of the discs using DMEM, supplemented with 10% fetal bovine serum (FBS). After 12h, the culture medium was replaced with DMEM containing 0.5% FBS. After additional 12h, blue (455±10nm) or red (630±10nm) LEDs were used at irradiances of 80 and 40mW/cm2, respectively, to irradiate the occlusal side of the discs. The energy doses were fixed at 2 or 4J/cm2. Cell viability, alkaline phosphatase activity (ALP), total protein production and collagen synthesis were evaluated 72h after irradiation. Data were submitted to Kruskal-Wallis and Mann-Whitney tests (α=0.05). ResultsRed light promoted proliferative effects at the energy dose of 4J/cm2. Conversely, cell cultures irradiated with 2J/cm2 emitted by the blue light showed reduced viability. ALP production was stimulated by red light in comparison with blue light at 4J/cm2. Total protein production was reduced after exposure to blue light at 4J/cm2, while no effect was observed on collagen production. ConclusionsIrradiation with red LED at 4J/cm2 bio-stimulated the viability of odontoblast-like cells, whilst blue light had unfavorable effects on the cellular metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.