Abstract

The hepatic metabolism of oleic acid and n-3 fatty acids (eicosapentaenoic acid, EPA and docosahexaenoic acid, DHA), and secretion of very low density lipoprotein (VLDL) were studied in isolated perfused rat livers from normal chow fed male rats. The basal perfusion medium contained 30% bovine erythrocytes, 6% bovine serum albumin (BSA), and 100 mg/dL glucose, in Krebs-Henseleit bicarbonate buffer (pH 7.4), which was recycled through the liver for 2 hr. Individual fatty acids (EPA, DHA or oleic acid), as complexes with 6% BSA, or albumin alone, were infused at a rate of 70 mumol/hr. When any of these fatty acids was infused at this rate, the ambient concentration in the medium was maintained at 0.3-0.4 mumol/mL, indicative of similar hepatic rates of uptake for each fatty acid (i.e., approximately 6 mumol/g liver/hr). When fatty acid was not infused, the ambient free fatty acid level was 0.16 mumol/mL. The concentrations of infused free fatty acids increased appropriately in the perfusion medium; however, with infusion of EPA, DHA, or oleate, the concentrations of perfusate palmitate and linoleate were the same as when fatty acid was not infused. Additionally, the perfusate concentration of oleate in the free fatty acid fraction was not affected by infusion of EPA and DHA. These data indicate a constant outflow of endogenous fatty acid unaffected by the presence of the exogenously supplied fatty acid. The net secretion rate of VLDL lipids and protein was stimulated by infusion of oleate, whereas when EPA was infused, secretion rates were lower and similar [except for VLDL cholesterol (C), which was greater] to those occurring when fatty acid was not provided.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.