Abstract

The human gut microbiota (HGM), which is critical to human health, utilises complex glycans as its major carbon source. Glycosaminoglycans represent an important, high priority, nutrient source for the HGM. Pathways for the metabolism of various glycosaminoglycan substrates remain ill-defined. Here we perform a biochemical, genetic and structural dissection of the genetic loci that orchestrates glycosaminoglycan metabolism in the organism Bacteroides thetaiotaomicron. Here, we report: the discovery of two previously unknown surface glycan binding proteins which facilitate glycosaminoglycan import into the periplasm; distinct kinetic and genetic specificities of various periplasmic lyases which dictate glycosaminoglycan metabolic pathways; understanding of endo sulfatase activity questioning the paradigm of how the ‘sulfation problem’ is handled by the HGM; and 3D crystal structures of the polysaccharide utilisation loci encoded sulfatases. Together with comparative genomic studies, our study fills major gaps in our knowledge of glycosaminoglycan metabolism by the HGM.

Highlights

  • IntroductionB. theta grows on CS-A, CS-C, DS and HA and transcriptomics, on CS-C and HA, demonstrate only PULCS/DS/HA and two additional genes, BT1596-S1_92S-sulf and BT4410PL33 are upregulated[4,13]

  • CS-A and CS-C are both composed of repeating disaccharide units composed of D-glucuronic acid (GlcA) and N-acetyl-D-galactosamine (GalNAc)

  • CS-A and CS-C differ only in sulfation with CS-A highly enriched in O4 sulfation on GalNAc whilst CS-C is enriched in O6 sulfation on GalNAc

Read more

Summary

Introduction

B. theta grows on CS-A, CS-C, DS and HA and transcriptomics, on CS-C and HA, demonstrate only PULCS/DS/HA and two additional genes, BT1596-S1_92S-sulf and BT4410PL33 are upregulated[4,13]. PULCS/DS/HA encodes three PLs (BT3324PL8, BT3328PL29 and BT3350PL8), one GH88 (BT3348GH88), 2-O-sulfatases (BT3333-S1_156S-sulf and BT3349-S1_274S-sulf), a single SusC/D-like transporter system (BT3331susD-BT3332susC), a hybrid two-component sensor (BT3334HTCS) and two proteins of unknown function (BT3329 and BT3330). The non-PUL encoded genes, BT1596-S1_92S-sulf and BT4410PL33, encode a 2-O sulfatase and a hyaluronidase, respectively (Fig. 1a, b). A surface enzyme(s), with usually one SGBP, degrades and captures large polysaccharides/ oligosaccharides at the cell surface. These partially degraded polysaccharides/oligosaccharides are transported into the periplasm through the action of the highly conserved, and critical, SusC/Dlike transporter system. Small polysaccharides/large oligosaccharides transported into the periplasm are metabolised to their constituent parts, usually monosaccharides, and transported into the cytoplasm to enter cytoplasmic metabolic pathways

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call