Abstract
Using (13)C-NMR, we demonstrate that [(13)C]methanol readily entered sycamore (Acer pseudoplatanus L.) cells to be slowly metabolized to [3-(13)C]serine, [(13)CH(3)]methionine, and [(13)CH(3)]phosphatidylcholine. We conclude that the assimilation of [(13)C]methanol occurs through the formation of (13)CH(3)H(4)Pte-glutamate (Glu)(n) and S-adenosyl-methionine, because feeding plant cells with [3-(13)CH(3)]serine, the direct precursor of (13)CH(2)H(4)Pte-Glu(n), can perfectly mimic [(13)CH(3)]methanol for folate-mediated single-carbon metabolism. On the other hand, the metabolism of [(13)C]methanol in plant cells revealed assimilation of label into a new cellular product that was identified as [(13)CH(3)]methyl-beta-D-glucopyranoside. The de novo synthesis of methyl-beta-D-glucopyranoside induced by methanol did not require the formation of (13)CH(3)H(4)Pte-Glu(n) and was very likely catalyzed by a "transglycosylation" process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.