Abstract
[5-3H, 1′-14C, 13C6, 12C] Indole-3-acetic acid (IAA), was applied to the flavedo (epicarp) of intact orange fruits at different stages of development. After incubation in the dark, at 25°C, the tissue was extracted with MeOH and the partially purified extracts were analyzed by reversed phase HPLC-RC. Six major metabolite peaks were detected and subsequently analyzed by combined HPLC-frit-FAB–MS. The metabolite peak 6 contained oxindole-3-acetic acid (OxIAA), indole-3-acetyl-N-aspartic acid (IAAsp) and also indole-3-acetyl-N-glutamic acid (IAGlu). The nature of metabolite 5 remains unknown. Metabolites 3 and 4 were diastereomers of oxindole-3-acetyl-N-aspartic acid (OxIAAsp). Metabolite 2 was identified as dioxindole-3-acetic acid and metabolite 1 as a DiOxIAA linked in position three to a hexose, which is suggested to be 3-(-O-β-glucosyl) dioxindole-3-acetic acid (DiOxIAGlc). Identification work as well as feeding experiments with the [5-3H]IAA labeled metabolites suggest that IAA is metabolized in flavedo tissue mainly through two pathways, namely IAA–OxIAA–DiOxIAA–DiOxIAGlc and IAA–IAAsp–OxIAAsp. The flavedo of citrus fruit has a high capacity for IAA catabolism until the beginning of fruit senescence, with the major route having DiOxIAGlc as end product. This capacity is operative even at high IAA concentrations and is accelerated by pretreatment with the synthetic auxins 2,4-D, NAA and the gibberellin GA3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.