Abstract

New psychoactive substances are constantly emerging, among which ketamine analogs with the core structure of 2-amino-2-phenylcyclohexanone have attracted global attention due to their continued involvement in acute intoxications. The monitoring of these substances largely relies on the acquisition of metabolic data. However, the lack of in vitro human metabolism information for these emerging structural analogs presents significant challenges to drug control efforts. To address this challenge, we investigated the first-phase metabolism patterns of four novel ketamine structural analogs of 2-FXE [2-(ethylamino)-2-(2-fluorophenyl) cyclohexan-1-one], 2-MDCK [2-(methylamino)-2-(o-tolyl) cyclohexan-1-one], 3-DMXE [2-(ethylamino)-2-(m-tolyl) cyclohexan-1-one], and 2-DMXE [2-(ethylamino)-2-(o-tolyl) cyclohexan-1-one] utilizing human liver microsomes for the first time. Metabolites were identified using ultra-performance liquid chromatography coupled with high-resolution tandem mass spectrometry. Our findings reveal that N-dealkylation and hydroxylation are the primary metabolic reactions, alongside other notable reactions, including oxidation, reduction, and dehydration. Based on our extensive research, we propose N-dealkylation and hydroxylation metabolites as appropriate analytical markers for monitoring the consumption of these substances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call