Abstract

Mycobacterium sp. strains CP1, CP2, CFt2 and CFt6 were isolated from creosote-contaminated soil due to their ability to grow in pyrene (CP1 and CP2) or fluoranthene (CFt2 and CFt6). All these strains utilized fluoranthene as a sole source of carbon and energy. Strain CP1 exhibited the best growth, with a cellular assimilation of fluoranthene carbon of approximately 45%. Identification of the metabolites accumulated during growth in fluoranthene, the kinetics of metabolites, and metabolite feeding studies, indicated that all these isolates oxidized fluoranthene by the following two routes: the first involves dioxygenation at C-1 and C-2, meta cleavage, and a 2-carbon fragment excision to produce 9-fluorenone-1-carboxylic acid. An angular dioxygenation of the latter yields cis-1,9a-dihydroxy-1-hydrofluorene-9-one-8-carboxylic acid, which is further degraded via 8-hydroxy-3,4-benzocoumarin-1-carboxylic acid, benzene-1,2,3-tricarboxylic acid, and phthalate; the second route involves dioxygenation at C-2 and C-3 and ortho cleavage to give Z-9-carboxymethylenefluorene-1-carboxylic acid. In addition, the pyrene-degrading strains CP1 and CP2 possess a third route initiated by dioxygenation at positions C-7 and C-8, which--following meta cleavage, an aldolase reaction, and a C(1)-fragment excision--yields acenaphthenone. Monooxygenation of this ketone to the corresponding quinone, and its subsequent hydrolysis, produces naphthalene-1,8-dicarboxylic acid. The results obtained in this study not only complete and confirm the three fluoranthene degradation routes previously proposed for the pyrene-degrading strain Mycobacterium sp. AP1, but also suggest that such routes represent general microbial processes for environmental fluoranthene removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.