Abstract

Understanding biotransformation pathways in aquatic species is an integral part of ecological risk assessment with respect to the potential bioactivation of chemicals to more toxic metabolites. The long-range goal is to gain sufficient understanding of fish metabolic transformation reactions to be able to accurately predict fish xenobiotic metabolism. While some metabolism data exist, there are few fish in vivo exposure studies where metabolites have been identified and the metabolic pathways proposed. Previous biotransformation work has focused on in vitro studies which have the advantage of high throughput but may have limited metabolic capabilities, and in vivo studies which have full metabolic capacity but are low throughput. An aquatic model system with full metabolic capacity in which a large number of chemicals could be tested would be a valuable tool. The current study evaluated the ex vivo rainbow trout liver slice model, which has the advantages of high throughput as found in vitro models and non-dedifferentiated cells and cell to cell communication found in in vivo systems. The pesticide diazinon, which has been previously tested both in vitro and in vivo in a number of mammalian and aquatic species including rainbow trout, was used to evaluate the ex vivo slice model as a tool to study biotransformation pathways. While somewhat limited by the analytical chemistry method employed, results of the liver slice model, mainly that hydroxypyrimidine was the major diazinon metabolite, are in line with the results of previous rainbow trout in vivo studies. Therefore, the rainbow trout liver slice model is a useful tool for the study of metabolism in aquatic species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.