Abstract

1. [(14)C]Acetoin was enzymically synthesized from [(14)C]pyruvate with a pyruvate decarboxylase preparation. Its optical activity was [alpha](20) (d)-78 degrees . 2. Large amounts (1000-fold higher than physiological concentrations) of acetoin were incubated with rat liver mince. Acetoin disappeared but very little (14)CO(2) was evolved. A compound accumulated, which was purified and identified as butane-2,3-diol. Chromatography on borate-impregnated paper indicated the presence of both the erythro and threo forms. 3. Liver extracts capable of interconverting biacetyl, acetoin and butane-2,3-diol were obtained. These interconversions were catalysed by two different enzymes: acetoin dehydrogenase (EC 1.1.1.5) and butane-2,3-diol dehydrogenase (EC 1.1.1.4), previously identified in bacteria. Both required NAD(+) or NADP(+) as cofactors and were different from alcohol dehydrogenase. The equilibrium in both cases favoured the more reduced compound. 4. The activity of butane-2,3-diol dehydrogenase was decreased by dialysis against EDTA: the addition of Co(2+), Cu(2+), Zn(2+) and other bivalent metal ions restored activity. 5. Biacetyl reductase was resolved into multiple forms by CM-Sephadex chromatography and electrophoresis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.